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Abstract

A new method is proposed to estimate a noise subspace. It is shown that the redundant
pre-filters of the multistage wiener flter (MSWF) are capable of creating an orthogonal basis
for the noise subspace. Based on the classical spatial smoothing technique and the Lanczos
algorithm, a novel technigue is presented to obtained the noise subspace in the case of coberent
signals, The new estimator outperforms its counterparts in terms of computational complexity.
Finally, the theotetical observations is illustrated by numerical results.

1. INTRODUCTION
It is shown that the classical MUSIC algorithm suffers from high computational load in the
case of farge number of sensors, mainly due to the fact that it needs to compute the eigenvectors
associated with the covariance matrix. On the other hand, the MUSIC estimator fails to form
peaks at the true direction-of-arrival (DOA) locations of signals when coherent signals exist
since the signal source covariance matrix is singular in this case.

This paper focus on a fast algorithm of the noise subspace estimation based on the spatial
smoothing Lanczos method. It is shown in what follows that a noise subspace can be obtained
with low computational cost and simple structure, i.e., only the forward recursion of the multi-
stage wiener filter (MSWF) recently presented by Goldstein et al [1] is needed.

II. DaTa MODEL

We consider the scenario of an M -element uniform linear array (ULA), with K statistically
independent narrowband signals impinging upon the array in different directions. Ali the signal
sources are assumed to undergo multipath propagation, producing a set of delayed and scaled
replicas of itself. In the sequel, the number of paths from the sth transmitter to the receiver s
denoted by p;. Accordingly, there are P = Ef:ﬂ’k {P < M) wavefronts impinging on the
array. The received signals corrupted by additive noise can be written as

xo() = A(#)s(i) + n(i} i=0,1,--- ,N—1 (1}
We define the following matrices and vectors
A) = [A1 Ay - Ax]
A;c = [ a(ﬁk,l) ﬂ(aqu) a(Bk‘p,‘) ]
s(i) = [ &) s - sk(@) ]
se() = [ k2 o cep Juell)

It is shown from Equation (1} that the received signals can be rewritten in terms of the
independent sources as [2]

xo()) = A(6}Cu(i)+n(i} @
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whereC = diag{ci,cz, - 2 Cr )} Ch = [k, Ch,2, 0+ 2 Chype | T and wli) = [ur(8), ua i), -, e ()T
are the corrupt matrix, the corrupt vector and the signal vector, respectively. The noise vector

n{i) € C**! is assumed to be a stationary Gaussian white random process, which is spatially
white and circularly symmetric. As a result, the covariance matrix takes the faliowing form:

Ry, = A(D)R,AT(6) + o7 L ®
where Rg and oy, are the signal source covariance matrix and the noise power, respectively.

III. FAST NOISE SUBSPACE ESTIMATION
It is shown in {3] that the columns of the reduced-dimensional transformation matrix T =
[t1, tz,- -, tp] of the MSWF are mutually orthogonal. Therefore, the rank D MSWF is
equivalent o solving the Wiener Hopf Equation Ry Wy = ryx.g, in the D-dimensional
Krylov subspace K07 (Rug, Txods) = 3901 {Txpdos RuoTxodas s RS Tyage}. It follows
that span{ty,---,tp} = span{rxye,, Rxorxods: - ,Rxﬁ-l Fxgdg . Note that R, is Her-
mitian, thus the columns of T can be computed by the Lanczos algorithm. The recursive
equation takes the following form
. Rocobi—1~ £ Rocbr—ibr—2— tf_ Rucbs_1bi1 @
r =
IRocots—1— tf_Rgbi-ith—o— ti_ Racte_iti—1llz
where Py = 1 — t;tf, i € {k — 1,k — 2}. The Lanczos algorithm was recently employed in
the MSWF by M. Joham et al [4].

It is worth noting that the columns of Tp are mutually orthogonal and contained in the
true signal subspace, it follows that the column subspace of Tp is contained in the signal
subspace, namely

8P = span{ty, tz,- -, tp} € S° 5

Obvicusly, the column subspace of T p is equivalent to the signal subspace if D = P. Thus,
the redundant pre-filters of the MSWF span a noise subspace since all the redundant pre-filters
after the Pth stage are orthogonal to the signal subspace. However, the findings above do not
hold in the case of coherent signals. A heuristic cbservation is that the pre-filter banks of the
MSWF can be computed by Lanczos algorithm, and the Lanczoy algorithm requires to estimate
Ryx,. Hence, many techniques can be used to "de-comelate” the coherent signals. The spatial
smoothing approach is applied herein for its simplicity in concept. It is shown that the sparially
smoothed covariance matrix can be expressed as

B 1 M—m+1
e S PR FT 6
k=1
where e = [0, v ¢ Imcm © Omwai—iomeny | 15 e selection matrix, m is the

number of elements of each subarray,

Consequently, the columns of Tp can be computed by the Lanczos algorithm since the
spatialty smoothed covariance matrix Ry, € C™>™ is the Hermitian matrix and || €; |l,= 1
holds for ali i € {1,2,---, D}. Hence, we get the recursion formula as follows

Robi_1 — 8 Radetbroz — U Ruefu—ifra
IIIExotkq ~tF_ Rubr_bi_2 — 6 Rute iti1l
_ _Ragbeor — ve-op-tbe—2 — Y1 p-ibe1 @

I Rxgbi—1 ~ Ye—2,k—1bk—2 = Voo Lh— b1l

o

r =

where 7 ; = T Ry 1.
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Suppose that there exists L (L > P) pre-filters of the MSWF such that the Jast L— P columns
of the redundant matrix Ty, _p = [Ep41,Epy2, -+, €] span a noise subspace, namely

NEF = span{tp,,tpya - B0} (8

where A'“=F represents the (I — P)-dimensional noise subspace.

Since the spatially smoothed covariance matrix R, is of rank m, the "spatially smoothed”
observation vector should be Xq(i) = xq,1:m(i), Where 21, (i) denotes a vector formed by the
the former ¢ elements of z(i). By substituting (6) into (7), the development of the spatia!
smoothing Lanczos (SS-Lanczos) algorithm can be fulfilled. The $§-Lanczos algorithm is
summed as follows

Stepl: =0, t = ﬁ:fnﬂ? .
o =0, 11 =ty Ry ty;
A=1;
Step2: for i=2 to M do
v =Rygtiog — Yig,i-1bi-2 = Yi1i-1ti-1
Yi-1i T [ vl
ti=v/v_i6
Yii = tgHRxnti;
if |E!-"’fll £ 0 or i=L+!
then A =i-1 break;
end for _
Step3: Tp= [El, £, ED]. Ta_p=(tps1,toga -, 8al

Note that the algorithm above requires to estimate the covariance matrix R,. this leads to
lower the mutually orthoganal property between the columns of T p since the samples is finite
anywhere. Thus, the property can be used to stop the $5-Lanczes algorithm.

Once the noise subspace is acquired by the 55-Lamczos method, the MUSIC algorithm
can be used to praduce peaks at the true DOA locations of signals since the estimator only
needs a simple one-dimensional search. Note that the $5-Lamczos estimator described in the
paper metrely requires O(L?MN) complex products operations [S]. However, the classical
MUSIC method resorts to the eigendecomposition of the covariance matrix, which is of O(M?3)
operations. Thus the computational complexity of the new algorithm is greatly reduced.

IV. NUMERICAL RESULTS

The receiving array herein is assurned to be a ULA with 32 isotropic sensors, whose spacings
equal half-wavelength. Suppose that there are three groups impinging upon the array with
there signals in the first group, two in the second and the third, respectively. Each group
contains a direct-path signal and several scaled and delayed replicas of the direct-path signal
that represent the multipaths or the "smart” jammers. The propagation constants of the three
groups are {1, —-0.8+ 70.6, 0.3 — j0.7}, {1,0.5 + 70.7,} and {1,0.4 + 0.9}, respectively.
In the sequel, the true DOAs are assumed to be {-9°,0°,24% 9,199, —15°}.

Fig, 1 and Fig. 2 show the spatial spectra of the MUSIC estitnator based on the spatial
smcothed Lanczos algorithm (SSL-MUSIC) and the spatial smoothed MUSIC method ($S-
MUSIC), respectively. The nummber of snapshots is 256, the rank of the MSWF is 10, SNR
equals OdB. It is shown in Fig. 1 and Fig. 2 that the SSL-MUSIC method has the same
resolution and estimation precision as the 8S-MUSIC algorithm. However, the computational
burden of the SSL-MUSIC technique is only of 691200 flops while the latter requires a
complexity of 5038848 fiops. '
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Fig. 1. $SL-MUSIC Specirum.
ssuamc
Ll
n|
&)
&%
L.
»
|

Fig. 2. 88-MUSIC Spectrum.

Y. CONCLUSION

A novel technique named spatial smoothing Lanczos (55-Lanczos) algorithm is presented in
this paper to estimate the noise subspace when coherent signals exist. The proposed method
does not resort to the computation of the covariance matrix, its eigendecomposition and the
backward recursion of the MSWF. Hence the computational complexity is dramatically reduced.
Numerical results show that the proposed estimator has nearly the same resolution and precision
as its counterparts based on the eigendecomposition,
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