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Ahsfmet 
A new mclhcd is proposed to estimate a mise subspace. I t  is shown that the rcdundanf 

pce-filters of the multistage w~cncr filler IMSWF) arc capable of cnating an onhogonal basis 
for the noise subspace. Based on thc classical spatial m"hing technique and Ihc Lanczor 
algoti<hm. a novel Lcchnique i s  preeienkd to aboincd rhe mix rubrpacc in the c a c  ofcahcnnt 

Finally. rhe thcorelical obrewalions is illur~ated by numerical xesuII1. 
iignds. ne "CW estimator outpariorms its CounterpMr in t e m  ofcomp"laliDnal COmplcXity. 

1. INTRODUCTION 
I t  is shown that the ~ l a s s i ~ a l  MUSIC algonthm suffers from high c~mputational load in the 

case of large number Of sensors. mainly due to the fact thet it needs to compute the eigenvectors 
associated with the covariance matrix. On the other hand. the MUSIC estimator fails to form 
peaks at the true direction-of-amival (DOA) I ~ ~ a t i o n s  of signals when cahereni signals exist 
since the signal source covariance mattix is singular in this case. 

This paper focus on r fast algorithm of the noise subspace estimation based on the spatial 
smmthing Lanczos method. If is shown in what fallows that a noise subspace can be obtained 
with IOW computational cost and simple stmcture, i.e., only the forward recursion of the multi- 
stage wiener filter (MSWF) recently presented by Goldstein et 01 [ I ]  is needed. 

11. DATA MODEL 
We consider the scenario of an M-element uniform linear anay (ULA), with K statistically 

independcnt narrowband signals impinging upon the m y  in different directions. All the signal 
sou~ces are assumed to undergo mulripatb propagation, producing a set of delayed and scaled 
replicas of itself. In  the sequel, the number of paths from the ith transminer 10 the receiver is 
denoted by p , .  Accordingly, there are P = C f = l p i ( P  < M) wavefronts impinging on the 
amy.  The received signals cormpted by additive noise can be wtirten as 

x o [ i ) = A ( B ) s ( i ) + n ( i )  i = O , l ,  .... N - 1  (1) 
We define the following matnces and VOCIOTS 

A(@) = [ AI As . . .  AK ] 
Ai = [ a ( @ d  a(#*,,) ' . .  a(Bi,p,)  ] 
.(i) = [ SI(i) s2 ( i )  ,. , SK(i) ] 
4) = [ C*,l Ck.2 " '  c k , p & ] = k ( i )  

It i s  shown from Equation ( I )  that the received signals can be rewritten in terms of the 
independent sources as I21 

%[i) = A(B)Cu(i)+n(i) (2) 
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whercC = diag(ci,c2,. . . , c K ) . q  = [ c ~ , ~ . c ~ , ~ ,  . . . , c * , ~ . ) ~  andu(i)  = [w(<),w(i),.  . - , u K ( ~ ) ] ~  
are the c a m p i  matrix. the eormpt vector and the signal ~cctor, respectively. The noise vector 
“(i) E C M X L  is assumed to be a stationary Gaussian white random pmcess, which is spatially 
white and circularly symmetric. As a resull. the covariance matrix Lakes the fallowing form: 

R,. = A(0)R,AH(O) +o:I (3) 

where R. and cm are the signal source cavatiance matrix and the noise power. respectively. 

111. FAST NOISE SUBSPACE ESTIMATION 

It is shown in 131 that the  column^ of the reduced-dimensional tiansformatian matrix To = 
Itl, tZ, .  . . ,to] of the MSWF are mutually onhogonal. Therefors. the rank D MSWF is 
equivalent lo solving the Wiener Hopf Equation R.,w,j = I,,& in the D-dimensional 
Krylov subspace K[D)(R, , ,  rxodo] = ~pn{r.,~,,R,, xo . . . , R ~ f ~ ’ ) r x o ~ } .  It follaws 
that span{t , ,  . . . , t o }  = span{rXod,, RxorxodO,. . . ,Rif-*rxodo}. Note that R,. is Her- 
mitian, thus the columns of TD can be computed by the Lnnczos algotithm. The recursive 
equation takes the following form 

where Pi = 1 - t , t y .  i E { k  - 1. k - 2). The lrinczos algorithm was recently employed in 
the MSWF by M. Jaham el 01 I41. 

It is worth noting that the columns of To are mutually onhogonal and contained in the 
true signal subspace, it follaws that the column subspace of To is contained in the signal 
subspace. namely 

Obviously. the ~olumn subspace of To is equivalent to the signal subspace if D = P. Thus, 
the redundant pre-filters of the MSWF span a noise subspace sincc all the redundant pn-filters 
after the FTh stage are orthogonal to the signal subspace. However, the findings above do not 
hold in the c a ~ e  of coherent signals. A heuristic observation is that the pre-filter banks of the 
MSWF can be computed by Lnncros algorithm. and the Lnncros alganthm q u i r e s  IO estimate 
FLo. Hence. many techniques can be used to “de-correlate” the coherent signals. The sparid 
smoothing approach is applied herein for its simplicity in concept. It is shown that the spatially 
smwthcd covariance matfir can be expressed as 

SD = 8parz{t,,t2.. .., to) 2 s p  ( 5 )  

where Fr  = [ o,~(~- , ,  
number of elements of each s u b m y .  

j I,,, j omx(,-k-m+,)  ] is the selection matrix, m i s  the 

Consequently, the columns of To can be computed by Ule Lonczor algorithm since the 
Spatially smoothed c o v w h ”  matrix R.. E Cmxm is the Hermitian matrix and 11 t, Il2= 1 
holds for all it {1,2, .  . . , D } .  Hence, we get the recursion formula as follows 
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Suppose rhatthere exists L (L z P )  prs-filtersofthe MSWFmch that the lalf L-Pcolumns 
of the redundant matrix r 6 - D  = [ E o + ~ , % D + ~ ,  . . , , SL]  span a noise subspace. namely 

NL-' = spon{ip+i, E P + . ; - .  , E L )  (8) 
where N L - p  represents the (L - P)-dimensional noise subspace. 

Since the spatially smoothed covariance matrix k0 is of rank m. the "spatially smwlhed" 
observation vector should be %(i) = ~~ ,~ : , , , ( i ) ,  where zlZt(i) denotes a vector formed by the 
the former I elements of z(i). By substituting (6 )  into (71, the development of the spalid 
smoothing Lonsos (SS-Lnnczos) algorithm can be fulfilled. The SS-Lnncros algotithm is 
summed as follows 

stepi: io = 0. E ,  = *; I "e 
To., = 0. = t P b , ;  
A = ] ;  

Step2 for i 5 2 to M do 
v = RxoE,-i - ~ ~ - - 2 , , - - l E i - - 2  - ~ , - i , < . i t , - i ;  

7 ; - I , *  = I l ~ I l Z i  
6 ,  = vlTq.L,3; 
71,- = EHRxai>; 
if ~ ~ y i ~ i  # n or ~ = L + I  
then A = i - 1 break; 

e!d for 
TD = [ E l , E , , .  . . , E D ] .  Stcp3: 

Note that the algorithm above requires to estimate the covariance mafrix & D .  this leads to 
lower the mutually onhogonal property between the columns of TD since thc sampler is fmile 
anywhere. Thus, the properly can be used to slop the SS-hncios algorithm. 

= [ E D + l , E D + z , .  . . ,En] 

Once rhc noise subspace is acquired by rhe SS-hmczos method, the MUSIC algorithm 
c m  be used to produce peaks 81 the true DOA iocations of signals Sinee Ihe estimator only 
needs a simple onedimensional search. Note that the SS-Lnmczos estimator described in the 
paper merely requires O ( L z U N )  complex products operations [ 5 ] .  However. the classical 
MUSIC method resons to the eigendecomposition of the co~tiancc matrix, which is of O ( M 3 )  
operations. Thus Ihe computational complexity of the new algorithm is greatly reduced. 

IV. NUMERICALRESULTS 
The receiving a m y  herein i s  assumed to he a ULA with 32 isotropic SOIISO~S, whose spacings 

qua l  half-wavelength. Suppose that there are three groups impinging upon the m y  with 
there signals in the fin1 group, lwo in the seeand and the third, respectively. Each group 
contains a direct-path Signal and several scaled and delayed replicas of the direct-path signal 
ulat represent the multipaths or the "smart" jamen .  The propagation constants of the three 
groups are [I, -0.8 + j0.6, -0.3 - j0.7).  {1,0.5 + j0.7, ) and [1,0.4 + j 0 .g ) .  respectively. 
In the sequel, the true DOAs are assumed 10 be (-So. On, 2@,9', 1g0, -lS0}. 

Fig. 1 and Fig. 2 show the spatial ~peclra of the MUSIC estimator based 00 the spatial 
smwthed hnczor algorithm (SSL-MUSIC) and the spatial smoothed MUSIC method (SS- 
MUSIC), respectively. The number of snapshots is 256, the rank of the MSWF i s  10. SNR 
equals OdB. It is shown in Fig. I and Fig. 2 that the SSL-MUSIC method has the same 
resolution and estimation precision as the SS-MUSIC algotithm. However, the computational 
burden of the SSL-MUSIC technique is only ai 691200 Rops while the latter requires a 
complexily of 5038848 flops. 
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Fig. I .  SSL~MUSIC Speclmm. 

Rg 2 SS-MUSIC Sprcmm 

V. CONCLUSION 
A novel technique named spatial smoothing Loncros (SS-Lanczos) algorithm is presented in 

this paper to estimate the noise subspace when coherent signals exist. The proposed method 
does not reson to the computation of the covariance matnr, iLs Pigendecomposition and the 
backward recursion of the MSWE Hence the computational compleriry is dramatically reduced. 
Numefical results show that the proposed estimator has nearly the same re~dution and precision 
as its ~ounterpanr based on the eigendecomposition. 
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